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Abstract: Syntheses of various bicyclic a-methylene butyrolactones from functionalized
propargyl bromides were carried out in short steps; the overall yields are reasonable. The
key step involves alkoxycarbonylation of molybdenum-propargyl compounds.
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a-Methylene butyrolactones are important structural units for many natural products especially terpenes
that often exhibit biological activity.!-2 Efficient syntheses of bicyclic and tricyclic a-methylene
butyrolactones in various forms are challenging.3-5 One successful route to bicyclic a-methylene
butyrolactones involves intramolecular acid- or metal-mediated annulation of B-ethoxycarbonylallylsilanes
and -bromides with tethered aldehydes;+5 a drawback of this method is the tedious synthesis of starting [3-
ethoxycarbonylallylic compounds. Here, we report the utilization of CpMo(CO)3Na to mediate the
synthesis of various fused a-methylene butyrolactones from more readily available bromopropargyl
aldehydes.5

The overall synthetic route is depicted in Scheme L. In a typical reaction, treatment of bromopropargyl
compound 1 with CpMo(CO)3Na delivered molybdenum-n1-propargyl species 2. We reported previously
that transition-metal-n!-propargyl species underwent alkoxycarbonylation reaction in the presence of
Bronsted acid.” Subsequent treatment of 2 with p-toluenesulfonic acid catalysts (0.20 equiv.) in ROH (R
= Me, Bul), followed by hydrolysis, afforded molybdenum-x-allyl species 3a and 3b in 70% and 78%
yields respectively based on propargyl bromides. To achieve the syntheses of o-methylene-
butyrolactones, compounds 3a-3b were sequentially treated with NOBF4 and MX (MX = Nal, LiCl) in
CH3CN, yielding the derivatives of CpMo(NO)X(rn-allyl)® (X = C1, I) A that functions as an allyl anion to
induce intramolecular cyclization in the absence of Lewis acid. After 24 hours at appropriate temperatures,
workup of the solution gave a mixture of trans-cyclopentanol 4a-4b and cis-o-methylene butyrolactones §
that were further separated on a silica column. The configurations of 4a-4b and § were determined by
proton NOE effect, and their IH NMR spectral data were identical to those of authentic sample.3
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Mo=CpMo(CO}; Mo'=CpMo(NO)X (a) CpMo(CO);Na (1.0 equiv). 0 °C. THF, 3 h (b) p-TSA (0.2 equiv.y
ROH (c) acetone/water/p-TSA (0.2 equiv.) (d) NOBF, (1.0 equiv¥CH;CN: MX (2.0 cquiv,)

Entry n-allyl  MX Temp. products (isolated Yields)
1 3a Nal 23% § (50%), 4a (12%)
2 % Nal 23°%C 5 (39%), 4b (23%)
3 3a LiCl 239 5 (13%), 4a (51%)
4 3a Nal 0% 5 (63%), 4a (2%)
5 3a Lict 0°c 5 (61%), 4a (3%)

One unique feature of this method is that two sites can be modified for stereocontrol of the products: (1)
the alkoxy group of ®-allyl compounds (2) the halide of the CoMo(NO)X core. Scheme 1 presents results
based on these modifications. Each reaction was performed at least twice, and the yields in Scheme 1,
reflect an average of two runs with a distribution range within 2 %. Regarding alkoxy groups, methoxy 3a
is better than isobutoxy 3b in the rrans-stereoselection at 23 O0C (entries 1-2). When 3a is used in the
reaction, trans-cyclopentanol 4a is the preferable product (entry 3) in contrast with the Nal case (entry 1)
under the same conditions. When the reaction temperature was 0 0C, both LiC] and Nal yielded cis-fused
lactone § exclusively (entries 4-5). This temperature effect retlects a very small ditference in the energics
of activation for cis/trans stereoselection of the primary cyclopentanol products.

As the starting bromopropargyl aldehydes are readily prepared, we expanded the scope of this method to
synthesize of a-methylenebutyrolactone tused with varied carbocyclic rings. The results are summarized in
Table 1. The n!-propargyl species generated from CpMo(CO)3Na and 6-9 were directly transformed into
n-allyl complexes 10-13 by p-toluenesulfonic acid/CH30H. The resulting -allyl complexes were
subsequently treated with NOBF4 and MX at appropriate temperatures to induce intramolecular cyclization,
ultimately yielding bicyclic a-methylenebutyrolactone 14-17 in reasonable yiclds. Entries 1-2 show the
aldehyde substrates 6-7 used for syntheses of a-methylenebutyrolactones fused wiih six- and seven-
membered rings 14-15; rrans-fused isomers were the major products in both cases. The trans-selectivity
of 15 is more pronounced at 5 0C (entry 2). Although CpMo(NO)X(nt-allyl) failed to react with ketones,$
intramolecular allylmolybdenum-ketone addition proceeded very smoothly (entries 3-4); both cases tavor
cis-stereoselection when Nal is used. When chloro replaced iodo, a cis- and rrans-isomeric mixture of’ six-
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membered carbocyclic ring 17 was obtained in a 3:2 ratio. In entry 4, the biproduct 2-iodomethyl-8-oxo-
non-2-enoic acid methyl ester 18 was isolated in 5% yield ogether with 17.

Table 1. Isolated Yields of Mo-r-allyl Compounds and Fused a-Methylenebutyrolactones.

Entry Substrate? n-Allyl B¢ MX/Temp. Lactonesd€
H
CO, Me O,
1 — Mo ? Nal / o=
— (CH3),CHO 0,
Br P e XJ‘\ (CHa)4CHO ntc }‘D
10 (80 %) H

14 cis 8% rrans 55%
H

2 Mo & Me zf;‘dé({ o=,
[—==—(CHy)sCHO 3 0c
B 7 o (CHy)CHO (59 4

H
11 (80%) 15 cis 14%: trans 48%
(cis-6%; trans 56%)
O M ‘ Me
3 [—==—(CH);COMe Mo {02 Me Nal / o=r
8 N 250
r 8 % (CH; ,COMe
12 (85 %) H
16 cis 70%
o )
4 =(CH),COMe  Mo{O:M Nal / o=¢ other!
~ 2 ' 2 0 ) +
Br 9 3 (CH, }COMe 7 18 (5 %)
H
13 (88 %) 17 cis 62%. trans 2 %;,
iCl/
5 9 13 ;3 Oc 17 cis 38%. trans26%

aEquimolar ratios of CpMo(CO)3Na and propargyl bromide were used. bThese organometallic compounds were
purified on a silica column “lIsolated yields afier chromatographic purification, disolated yields alter purification
with preparative silica TLC. €Yields are estimated based on molybdenum-allyl compounds. This byproduct was
identitied as 2-iodomethy!-8-oxo-non-2-enoic acid methyl ester.

Scheme 2 rationalizes the stercochemical course for the [4,3,0] fused lactones 14 and 17 that follow
trans- and cis-stercoselections respectively. Complexes of CpMo(NO)X(w-allyl) are prone to @ -> ¢
dissociation8 to leave a vacant site that coordinates organic carbonyls to form a chairlike conformation
represented by B. This process tend to yield a rrans-fused isomer of 14 consistent with our observation.
When a ketone replaces the aldehyde as in the case of 9, the methyl group (R = Me) of B suffers |,3-
diaxial interactions with CO2Me; the resulting product 17 is expected to follow cis -selectivity via a
boatlike transition structure C. Such bicyclic transition structures account not only for the stereochemistries
of 14 and 17 but also for those of bicyclic fused lactones §, 15 and 16.
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In summary, we have developed an efficient method for synthesis of fused a-methylenebutyrolactones
based on bromopropargyl aldehydes; the key step involves alkoxycarbonylation of an molybdenum
propargyl intermediate. Stereochemical courses of allylmolybdenum-carbonyl addition can be rationalized
based on bicyclic transition states.
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